

\(\frac{dm}{dt} = p_1 A_1 v_1 = 0.8 \, \text{kg/s} \, A\)
\(v_1 = \frac{0.8}{0.2 \times 0.1} = 40 \, \text{m/s}\)
g = 10 m/s2
\(\gamma = 2\)
Gas undergoes adiabatic expansion,
\(p_1 - \gamma T^{\gamma} = \text{Constant}\)
\(\frac{P_2}{P_1}=(\frac{T_1}{T_2})^{\frac{r}{1-\gamma}}\)
\(P_2=\frac{600}{4}=150P_a\)
Now \(\rho∝\frac{P}{T}\)
\(\frac{\rho_1}{\rho_2}=(\frac{P_1}{P_2})(\frac{T_1}{T_2})\)
\((\frac{150}{600})(\frac{300}{150})=\frac{1}{2}\)
Now
\(P_1 A_1 \Delta x_1 - P_2 A_2 \Delta x_2 = 2 mV_1 - mV_2 + mgh_2 - mgh_1 + \frac{f}{2}(P_2 V_2 - P_1 V_1)\)
Simplifying we get. \(\frac{V_2}{V_1} - \frac{V_1}{V_2} = \frac{2P}{gh} \frac{m}{m}\)
\(⇒\frac{2\times600}{0.2}-\frac{2\times150}{0.1}\)
\(=\frac{20^2-40^2}{2}+10h\)
\(h = 360 m\)
Let $ P(x_1, y_1) $ and $ Q(x_2, y_2) $ be two distinct points on the ellipse $$ \frac{x^2}{9} + \frac{y^2}{4} = 1 $$ such that $ y_1 > 0 $, and $ y_2 > 0 $. Let $ C $ denote the circle $ x^2 + y^2 = 9 $, and $ M $ be the point $ (3, 0) $. Suppose the line $ x = x_1 $ intersects $ C $ at $ R $, and the line $ x = x_2 $ intersects $ C $ at $ S $, such that the $ y $-coordinates of $ R $ and $ S $ are positive. Let $ \angle ROM = \frac{\pi}{6} $ and $ \angle SOM = \frac{\pi}{3} $, where $ O $ denotes the origin $ (0, 0) $. Let $ |XY| $ denote the length of the line segment $ XY $. Then which of the following statements is (are) TRUE?
