\(\frac{dm}{dt} = p_1 A_1 v_1 = 0.8 \, \text{kg/s} \, A\)
\(v_1 = \frac{0.8}{0.2 \times 0.1} = 40 \, \text{m/s}\)
g = 10 m/s2
\(\gamma = 2\)
Gas undergoes adiabatic expansion,
\(p_1 - \gamma T^{\gamma} = \text{Constant}\)
\(\frac{P_2}{P_1}=(\frac{T_1}{T_2})^{\frac{r}{1-\gamma}}\)
\(P_2=\frac{600}{4}=150P_a\)
Now \(\rho∝\frac{P}{T}\)
\(\frac{\rho_1}{\rho_2}=(\frac{P_1}{P_2})(\frac{T_1}{T_2})\)
\((\frac{150}{600})(\frac{300}{150})=\frac{1}{2}\)
Now
\(P_1 A_1 \Delta x_1 - P_2 A_2 \Delta x_2 = 2 mV_1 - mV_2 + mgh_2 - mgh_1 + \frac{f}{2}(P_2 V_2 - P_1 V_1)\)
Simplifying we get. \(\frac{V_2}{V_1} - \frac{V_1}{V_2} = \frac{2P}{gh} \frac{m}{m}\)
\(⇒\frac{2\times600}{0.2}-\frac{2\times150}{0.1}\)
\(=\frac{20^2-40^2}{2}+10h\)
\(h = 360 m\)
Let $ S $ denote the locus of the point of intersection of the pair of lines $$ 4x - 3y = 12\alpha,\quad 4\alpha x + 3\alpha y = 12, $$ where $ \alpha $ varies over the set of non-zero real numbers. Let $ T $ be the tangent to $ S $ passing through the points $ (p, 0) $ and $ (0, q) $, $ q > 0 $, and parallel to the line $ 4x - \frac{3}{\sqrt{2}} y = 0 $.
Then the value of $ pq $ is
Let $ y(x) $ be the solution of the differential equation $$ x^2 \frac{dy}{dx} + xy = x^2 + y^2, \quad x > \frac{1}{e}, $$ satisfying $ y(1) = 0 $. Then the value of $ 2 \cdot \frac{(y(e))^2}{y(e^2)} $ is ________.