F and G denote two points on a spacecraft’s orbit around a planet, as indicated in the figure. O is the center of the planet, P is the periapsis, and the angles are as indicated in the figure. If \( OF = 8000 \, {km} \), \( OG = 10000 \, {km} \), \( \theta_F = 0^\circ \), and \( \theta_G = 60^\circ \), the eccentricity of the spacecraft's orbit is ___________ (rounded off to two decimal places).
Two identical concave mirrors each of focal length $ f $ are facing each other as shown. A glass slab of thickness $ t $ and refractive index $ n_0 $ is placed equidistant from both mirrors on the principal axis. A monochromatic point source $ S $ is placed at the center of the slab. For the image to be formed on $ S $ itself, which of the following distances between the two mirrors is/are correct:
The major products obtained from the reactions in List-II are the reactants for the named reactions mentioned in List-I. Match each entry in List-I with the appropriate entry in List-II and choose the correct option.
As shown in the figures, a uniform rod $ OO' $ of length $ l $ is hinged at the point $ O $ and held in place vertically between two walls using two massless springs of the same spring constant. The springs are connected at the midpoint and at the top-end $ (O') $ of the rod, as shown in Fig. 1, and the rod is made to oscillate by a small angular displacement. The frequency of oscillation of the rod is $ f_1 $. On the other hand, if both the springs are connected at the midpoint of the rod, as shown in Fig. 2, and the rod is made to oscillate by a small angular displacement, then the frequency of oscillation is $ f_2 $. Ignoring gravity and assuming motion only in the plane of the diagram, the value of $\frac{f_1}{f_2}$ is: