Step 1: Calculate the potential energy converted to heat:
When water falls, its potential energy is converted to kinetic energy and then to thermal energy upon impact.
The potential energy per unit mass is: \[ PE = mgh \] where: \begin{itemize} \item \( m \) = mass of water (1 kg for calculation) \item \( g = 10 \, \text{m/s}^2 \) \item \( h = 200 \, \text{m} \) \end{itemize} \[ PE = 1 \times 10 \times 200 = 2000 \, \text{J} \]
Step 2: Relate energy to temperature change:
The thermal energy \( Q \) is related to temperature change \( \Delta T \) by: \[ Q = mc\Delta T \] where: \begin{itemize} \item \( c = 4200 \, \text{J/(kg K)} \) (specific heat capacity of water) \end{itemize} Rearranging for \( \Delta T \): \[ \Delta T = \frac{Q}{mc} = \frac{2000}{1 \times 4200} \approx 0.476 \, \text{K} \]
Step 3: Round to match options:
The closest option to 0.476 K is 0.48 K.