Step 1: Calculate the potential energy converted to heat:
When water falls, its potential energy is converted to kinetic energy and then to thermal energy upon impact.
The potential energy per unit mass is: \[ PE = mgh \] where: \begin{itemize} \item \( m \) = mass of water (1 kg for calculation) \item \( g = 10 \, \text{m/s}^2 \) \item \( h = 200 \, \text{m} \) \end{itemize} \[ PE = 1 \times 10 \times 200 = 2000 \, \text{J} \]
Step 2: Relate energy to temperature change:
The thermal energy \( Q \) is related to temperature change \( \Delta T \) by: \[ Q = mc\Delta T \] where: \begin{itemize} \item \( c = 4200 \, \text{J/(kg K)} \) (specific heat capacity of water) \end{itemize} Rearranging for \( \Delta T \): \[ \Delta T = \frac{Q}{mc} = \frac{2000}{1 \times 4200} \approx 0.476 \, \text{K} \]
Step 3: Round to match options:
The closest option to 0.476 K is 0.48 K.
A hot, freshly-sterilised fermentation medium is cooled in a double-pipe heat-exchanger. The medium enters the inner pipe of the exchanger at 95 \(^\circ C\) and leaves the exchanger at 40 \(^\circ C\). Cooling water, flowing counter-currently to the medium, enters the annulus of the exchanger at 15 \(^\circ C\) and leaves the exchanger at 45 \(^\circ C\). The overall heat transfer coefficient is 1350 W m\(^{-2}\) °C\(^{-1}\). The rate of heat transfer per unit area will be _________ W/m². (Round off to the nearest integer)
In a fermentation process, each mole of glucose is converted to biomass (CH\(_1.8\)O\(_0.5\)N\(_0.2\)), with a biomass yield coefficient of 0.4 C-mol/C-mol, according to the unbalanced equation given below. \[ {C}_6{H}_{12}{O}_6 + {NH}_3 + {O}_2 \to {CH}_1.8{O}_0.5{N}_0.2 + {CO}_2 + {H}_2{O} \] The moles of oxygen consumption per mole of glucose consumed during fermentation is _. (Round off to two decimal places)
An adiabatic pump of efficiency 40% is used to increase the water pressure from 200 kPa to 600 kPa. The flow rate of water is 600 L/min. The specific heat of water is 4.2 kJ/(kg°C). Assuming water is incompressible with a density of 1000 kg/m\(^3\), the maximum temperature rise of water across the pump is ________°C (rounded off to 3 decimal places).
Given below are two statements: one is labelled as Assertion A and the other is labelled as Reason R
Assertion A: Work done in moving a test charge between two points inside a uniformly charged spherical shell is zero, no matter which path is chosen.
Reason R: Electrostatic potential inside a uniformly charged spherical shell is constant and is same as that on the surface of the shell.
In the light of the above statements, choose the correct answer from the options given below
Figure shows a current carrying square loop ABCD of edge length is $ a $ lying in a plane. If the resistance of the ABC part is $ r $ and that of the ADC part is $ 2r $, then the magnitude of the resultant magnetic field at the center of the square loop is:
The output voltage in the following circuit is (Consider ideal diode case):