Step 1: Calculate the potential energy converted to heat:
When water falls, its potential energy is converted to kinetic energy and then to thermal energy upon impact.
The potential energy per unit mass is: \[ PE = mgh \] where: \begin{itemize} \item \( m \) = mass of water (1 kg for calculation) \item \( g = 10 \, \text{m/s}^2 \) \item \( h = 200 \, \text{m} \) \end{itemize} \[ PE = 1 \times 10 \times 200 = 2000 \, \text{J} \]
Step 2: Relate energy to temperature change:
The thermal energy \( Q \) is related to temperature change \( \Delta T \) by: \[ Q = mc\Delta T \] where: \begin{itemize} \item \( c = 4200 \, \text{J/(kg K)} \) (specific heat capacity of water) \end{itemize} Rearranging for \( \Delta T \): \[ \Delta T = \frac{Q}{mc} = \frac{2000}{1 \times 4200} \approx 0.476 \, \text{K} \]
Step 3: Round to match options:
The closest option to 0.476 K is 0.48 K.
For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).
Let \( T_r \) be the \( r^{\text{th}} \) term of an A.P. If for some \( m \), \( T_m = \dfrac{1}{25} \), \( T_{25} = \dfrac{1}{20} \), and \( \displaystyle\sum_{r=1}^{25} T_r = 13 \), then \( 5m \displaystyle\sum_{r=m}^{2m} T_r \) is equal to: