An explosion at time \(t = 0\) releases energy \(E\) at the origin in a space filled with a gas of density \(\rho\). Subsequently, a hemispherical blast wave propagates radially outwards as shown in the figure.
Let \(R\) denote the radius of the front of the hemispherical blast wave. The radius \(R\) follows the relationship \(R = k t^a E^b \rho^c\), where \(k\) is a dimensionless constant. The value of exponent \(a\) is ................
(Rounded off to one decimal place) 
An electrical wire of 2 mm diameter and 5 m length is insulated with a plastic layer of thickness 2 mm and thermal conductivity \( k = 0.1 \) W/(m·K). It is exposed to ambient air at 30°C. For a current of 5 A, the potential drop across the wire is 2 V. The air-side heat transfer coefficient is 20 W/(m²·K). Neglecting the thermal resistance of the wire, the steady-state temperature at the wire-insulation interface __________°C (rounded off to 1 decimal place).

GIVEN:
Kinematic viscosity: \( \nu = 1.0 \times 10^{-6} \, {m}^2/{s} \)
Prandtl number: \( {Pr} = 7.01 \)
Velocity boundary layer thickness: \[ \delta_H = \frac{4.91 x}{\sqrt{x \nu}} \]
The first-order irreversible liquid phase reaction \(A \to B\) occurs inside a constant volume \(V\) isothermal CSTR with the initial steady-state conditions shown in the figure. The gain, in kmol/m³·h, of the transfer function relating the reactor effluent \(A\) concentration \(c_A\) to the inlet flow rate \(F\) is:

Considering the actual demand and the forecast for a product given in the table below, the mean forecast error and the mean absolute deviation, respectively, are:

P and Q play chess frequently against each other. Of these matches, P has won 80% of the matches, drawn 15% of the matches, and lost 5% of the matches.
If they play 3 more matches, what is the probability of P winning exactly 2 of these 3 matches?