An explosion at time \(t = 0\) releases energy \(E\) at the origin in a space filled with a gas of density \(\rho\). Subsequently, a hemispherical blast wave propagates radially outwards as shown in the figure.
Let \(R\) denote the radius of the front of the hemispherical blast wave. The radius \(R\) follows the relationship \(R = k t^a E^b \rho^c\), where \(k\) is a dimensionless constant. The value of exponent \(a\) is ................
(Rounded off to one decimal place) 
Consider two identical tanks with a bottom hole of diameter \( d \). One tank is filled with water and the other tank is filled with engine oil. The height of the fluid column \( h \) is the same in both cases. The fluid exit velocity in the two tanks are \( V_1 \) and \( V_2 \). Neglecting all losses, which one of the following options is correct?

A pitot tube connected to a U-tube mercury manometer measures the speed of air flowing in the wind tunnel as shown in the figure below. The density of air is 1.23 kg m\(^{-3}\) while the density of water is 1000 kg m\(^{-3}\). For the manometer reading of \( h = 30 \) mm of mercury, the speed of air in the wind tunnel is _________ m s\(^{-1}\) (rounded off to 1 decimal place).

Consider a velocity field \( \vec{V} = 3z \hat{i} + 0 \hat{j} + Cx \hat{k} \), where \( C \) is a constant. If the flow is irrotational, the value of \( C \) is (rounded off to 1 decimal place).
A pitot tube connected to a U-tube mercury manometer measures the speed of air flowing in the wind tunnel as shown in the figure below. The density of air is 1.23 kg m\(^{-3}\) while the density of water is 1000 kg m\(^{-3}\). For the manometer reading of \( h = 30 \) mm of mercury, the speed of air in the wind tunnel is _________ m s\(^{-1}\) (rounded off to 1 decimal place). 