The correct option is(D): \(8\sqrt{3}\).
Let AB = \(\ell , \, then \, \, AM \, = \ell cos 30^{?} \, = \frac{\ell \sqrt{3}}{2}\)
& BM = \(\ell \, sin 30^{?} \, = \frac{\ell}{2}\)
So, the coordinates of B are \(\bigg( \frac{\ell \sqrt{3}}{2}, \frac{\ell}{2}\bigg)\)
Since, B lies on \(y^2 \, = \, 4x\)
\(\therefore \, \, \frac{\ell^2}{4}=4\bigg(\frac{\ell \sqrt{3}}{2}\bigg)\)
\(\Rightarrow \, \, \ell^2 \, \frac{16}{2}. \sqrt{3\ell} \, \, \Rightarrow \, \, =8\sqrt{3}\)
Parabola is defined as the locus of points equidistant from a fixed point (called focus) and a fixed-line (called directrix).
=> MP2 = PS2
=> MP2 = PS2
So, (b + y)2 = (y - b)2 + x2