Step 1: Using the formula for density.
Density \( \rho \) is given by:
\[
\rho = \frac{Z \times M}{N_A \times a^3}
\]
Where:
- \( Z = 4 \) for fcc (face-centered cubic),
- \( M = 90.3 \, \text{g/mol} \),
- \( a = 250 \, \text{pm} = 250 \times 10^{-12} \, \text{m} \),
- \( N_A = 6.022 \times 10^{23} \, \text{mol}^{-1} \).
Step 2: Calculation.
Substitute the values:
\[
\rho = \frac{4 \times 90.3 \, \text{g/mol}}{6.022 \times 10^{23} \times (250 \times 10^{-12})^3}
\]
This results in a density of \( 38.40 \, \text{g/cm}^3 \).
Step 3: Conclusion.
The correct answer is (D) 38.40 g cm\(^{-3}\).