Step 1: Determine the electric field and force on the electron.
- For an infinite non-conducting sheet with charge density \(-\sigma\), the electric field \(E\) is: \[ E = \frac{\sigma}{2\epsilon_0} \] - The force on the electron (charge \(-e\)) is: \[ F = -eE = -\frac{e\sigma}{2\epsilon_0} \] - The acceleration \(a\) of the electron is: \[ a = \frac{F}{m_e} = -\frac{e\sigma}{2\epsilon_0 m_e} \]
Step 2: Find the velocity as a function of time. - Since the electron starts from rest, its velocity \(v\) at time \(t\) is: \[ v = at = -\frac{e\sigma}{2\epsilon_0 m_e} t \]
Step 3: Express the de-Broglie wavelength \(\lambda\). - The de-Broglie wavelength is given by: \[ \lambda = \frac{h}{p} = \frac{h}{m_e v} = \frac{h}{m_e \left|\frac{e\sigma}{2\epsilon_0 m_e} t\right|} = \frac{2\epsilon_0 h}{e\sigma t} \]
Step 4: Compute the rate of change of \(\lambda\) with respect to time. \[ \frac{d\lambda}{dt} = -\frac{2\epsilon_0 h}{e\sigma t^2} \] - The magnitude of the rate of change is: \[ \left|\frac{d\lambda}{dt}\right| \propto \frac{1}{t^2} \]
Step 5: Compare with the given relation. - The problem states that \(\frac{d\lambda}{dt}\) varies inversely as the \(n^{th}\) power of time.
From Step 4, we see: \[ \left|\frac{d\lambda}{dt}\right| \propto \frac{1}{t^2} \quad \Rightarrow \quad n = 2 \]