The Lorentz force is given by:
\[
\mathbf{F} = q (\mathbf{E} + \mathbf{v} \times \mathbf{B})
\]
Computing the cross product \( \mathbf{v} \times \mathbf{B} \):
\[
(2\hat{i} + 3\hat{j}) \times (2\hat{j} + 3\hat{k})
\]
Solving for \( \mathbf{F} \), we get:
\[
F = 2.15 \times 10^{-18} N
\]
The direction is given by:
\[
\theta = \cos^{-1} \left(\frac{2}{\sqrt{5}}\right)
\]
Thus, the correct answer is \( 2.15 \times 10^{-18} N, \quad \theta = \cos^{-1} \left(\frac{2}{\sqrt{5}}\right) \).