The magnetic force on a charged particle moving in a magnetic field is given by:
\[
F = qvB \sin \theta
\]
Where:
- \(q = 1.6 \times 10^{-19} \, \text{C}\) (charge of electron),
- \(v = 3 \times 10^6 \, \text{m/s}\) (speed of electron),
- \(B = 0.05 \, \text{T}\) (magnetic field),
- \(\theta = 30^\circ\) (angle between velocity and magnetic field).
Substituting the values:
\[
F = (1.6 \times 10^{-19}) \times (3 \times 10^6) \times (0.05) \times \sin 30^\circ
\]
Since \(\sin 30^\circ = 0.5\), we get:
\[
F = (1.6 \times 10^{-19}) \times (3 \times 10^6) \times (0.05) \times 0.5
\]
\[
F = 1.2 \times 10^{-14} \, \text{N}
\]
Thus, the magnitude of the magnetic force on the electron is \(1.2 \times 10^{-14}\) N.