The de Broglie wavelength (\( \lambda \)) of a particle is given by the de Broglie relation:
\[
\lambda = \frac{h}{p}
\]
where \( h \) is Planck’s constant and \( p \) is the momentum of the particle.
Step 1: Calculate the momentum of the electron.
The kinetic energy \( K.E. \) of the electron after being accelerated by a potential \( V \) is:
\[
K.E. = eV
\]
where \( e \) is the charge of the electron and \( V \) is the potential.
Given \( V = 10 \, \text{kV} = 10^4 \, \text{V} \) and \( e = 1.6 \times 10^{-19} \, \text{C} \), the kinetic energy is:
\[
K.E. = (1.6 \times 10^{-19})(10^4) = 1.6 \times 10^{-15} \, \text{J}
\]
Since the electron is initially at rest, all the kinetic energy is converted into momentum.
The relation between kinetic energy and momentum is:
\[
K.E. = \frac{p^2}{2m}
\]
where \( m = 9.11 \times 10^{-31} \, \text{kg} \).
Solving for \( p \):
\[
p = \sqrt{2mK.E.}
\]
\[
p = \sqrt{2(9.11 \times 10^{-31})(1.6 \times 10^{-15})}
\]
So, \( p = 5.40 \times 10^{-23} \) kg·m/s
Step 2: Calculate the de Broglie wavelength.
Using the relation:
\[
\lambda = \frac{h}{p}
\]
Substituting \( h = 6.63 \times 10^{-34} \) J·s and \( p = 5.40 \times 10^{-23} \) kg·m/s:
\[
\lambda = \frac{6.63 \times 10^{-34}}{5.40 \times 10^{-23}}
\]
\[
\lambda = 1.23 \times 10^{-11} \, \text{m}
\]
Convert to angstroms (\( 1 \, \text{Å} = 10^{-10} \, \text{m} \)):
\[
\lambda = 1.23 \times 10^{-11} \times 10^{10} = 0.123 \, \text{Å}
\]
Final Answer:
\[
\boxed{0.123 \, \text{Å}}
\]