An electrochemical cell is fueled by the combustion of butane at 1 bar and 298 K. Its cell potential is $ \frac{X}{F} \times 10^3 $ volts, where $ F $ is the Faraday constant. The value of $ X $ is ____.
Use: Standard Gibbs energies of formation at 298 K are:
$ \Delta_f G^\circ_{CO_2} = -394 \, \text{kJ mol}^{-1}; \quad \Delta_f G^\circ_{water} = -237 \, \text{kJ mol}^{-1}; \quad \Delta_f G^\circ_{butane} = -18 \, \text{kJ mol}^{-1} $
Assertion (A): Cu cannot liberate \( H_2 \) on reaction with dilute mineral acids.
Reason (R): Cu has positive electrode potential.
The elements of the 3d transition series are given as: Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn. Answer the following:
Copper has an exceptionally positive \( E^\circ_{\text{M}^{2+}/\text{M}} \) value, why?
Match the Following
List-I (Use) | Item | Matches with | List-II (Substance) |
---|---|---|---|
A | Electrodes in batteries | II | Polyacetylene |
B | Welding of metals | III | Oxyacetylene |
C | Toys | I | Polypropylene |
Consider the following electrochemical cell at standard condition. $$ \text{Au(s) | QH}_2\text{ | QH}_X(0.01 M) \, \text{| Ag(1M) | Ag(s) } \, E_{\text{cell}} = +0.4V $$ The couple QH/Q represents quinhydrone electrode, the half cell reaction is given below: $$ \text{QH}_2 \rightarrow \text{Q} + 2e^- + 2H^+ \, E^\circ_{\text{QH}/\text{Q}} = +0.7V $$
Let $ y(x) $ be the solution of the differential equation $$ x^2 \frac{dy}{dx} + xy = x^2 + y^2, \quad x > \frac{1}{e}, $$ satisfying $ y(1) = 0 $. Then the value of $ 2 \cdot \frac{(y(e))^2}{y(e^2)} $ is ________.
Let $ \mathbb{R} $ denote the set of all real numbers. Then the area of the region $$ \left\{ (x, y) \in \mathbb{R} \times \mathbb{R} : x > 0, y > \frac{1}{x},\ 5x - 4y - 1 > 0,\ 4x + 4y - 17 < 0 \right\} $$ is