Work done depends on the angle of rotation and the strength of the electric field.
Step 1: Formula for work done - Work done is given by: \[ W_{\text{ext}} = U_f - U_i, \] where \(U = -\vec{P} \cdot \vec{E}\). - Initial potential energy: \[ U_i = -PE \cos 0 = -PE. \] - Final potential energy: \[ U_f = -PE \cos 180 = +PE. \]
Step 2: Substitute the values - \[ W_{\text{ext}} = U_f - U_i = PE - (-PE) = 2PE. \] Substituting values: \[ W_{\text{ext}} = 2 \cdot 6.0 \times 10^{-6} \cdot 1.5 \times 10^3. \] Simplifying: \[ W_{\text{ext}} = 18 \, \text{mJ}. \]
Final Answer: The work done is 18 mJ.
A metallic ring is uniformly charged as shown in the figure. AC and BD are two mutually perpendicular diameters. Electric field due to arc AB to O is ‘E’ magnitude. What would be the magnitude of electric field at ‘O’ due to arc ABC?
20 mL of sodium iodide solution gave 4.74 g silver iodide when treated with excess of silver nitrate solution. The molarity of the sodium iodide solution is _____ M. (Nearest Integer value) (Given : Na = 23, I = 127, Ag = 108, N = 14, O = 16 g mol$^{-1}$)