Work done depends on the angle of rotation and the strength of the electric field.
Step 1: Formula for work done - Work done is given by: \[ W_{\text{ext}} = U_f - U_i, \] where \(U = -\vec{P} \cdot \vec{E}\). - Initial potential energy: \[ U_i = -PE \cos 0 = -PE. \] - Final potential energy: \[ U_f = -PE \cos 180 = +PE. \]
Step 2: Substitute the values - \[ W_{\text{ext}} = U_f - U_i = PE - (-PE) = 2PE. \] Substituting values: \[ W_{\text{ext}} = 2 \cdot 6.0 \times 10^{-6} \cdot 1.5 \times 10^3. \] Simplifying: \[ W_{\text{ext}} = 18 \, \text{mJ}. \]
Final Answer: The work done is 18 mJ.
Two large plane parallel conducting plates are kept 10 cm apart as shown in figure. The potential difference between them is $ V $. The potential difference between the points A and B (shown in the figure) is: 
Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason (R).
Assertion (A): Net dipole moment of a polar linear isotropic dielectric substance is not zero even in the absence of an external electric field. Reason
(R): In absence of an external electric field, the different permanent dipoles of a polar dielectric substance are oriented in random directions.
In the light of the above statements, choose the most appropriate answer from the options given below:
A metallic ring is uniformly charged as shown in the figure. AC and BD are two mutually perpendicular diameters. Electric field due to arc AB to O is ‘E’ magnitude. What would be the magnitude of electric field at ‘O’ due to arc ABC? 
Method used for separation of mixture of products (B and C) obtained in the following reaction is: 