(i) The potential \( V \) due to two point charges \( +q \) and \( -q \) separated by a distance \( 2a \) can be calculated using:
\[
V = \frac{1}{4\pi \epsilon_0} \left( \frac{q}{x - a} - \frac{q}{x + a} \right)
\]
Simplifying this, we get:
\[
V = \frac{q}{4\pi \epsilon_0} \left( \frac{1}{x - a} - \frac{1}{x + a} \right)
\]
The common denominator simplifies to:
\[
V = \frac{q}{4\pi \epsilon_0} \cdot \frac{(x + a) - (x - a)}{x^2 - a^2}
\]
Thus, the potential becomes:
\[
V = \frac{q}{4\pi \epsilon_0} \cdot \frac{2a}{x^2 - a^2}
\]
Now, since \( p = 2a q \) is the dipole moment, the potential can be written as:
\[
V = \frac{p}{4\pi \epsilon_0} \cdot \frac{1}{x^2 - a^2}
\]
If \( x \gg a \), the potential simplifies to:
\[
V \approx \frac{p}{4\pi \epsilon_0} \cdot \frac{1}{x^2}
\]
Alternatively, we can use the geometry of the situation to derive the following expression for the potential:
\[
V = \frac{1}{4\pi \epsilon_0} \left( \frac{q}{r_1} - \frac{q}{r_2} \right)
\]
where \( r_1 \) and \( r_2 \) are the distances from the charges to the point where the potential is being calculated.
Using geometry, we can express \( r_1 \) and \( r_2 \) as:
\[
r_1 = \sqrt{r^2 - 2a r \cos \theta}
\]
\[
r_2 = \sqrt{r^2 + 2a r \cos \theta}
\]
Now using the binomial expansion and retaining terms up to the first order in \( a/r \), we get:
\[
\frac{1}{r_1} \approx \frac{1}{r} \left( 1 + \frac{a \cos \theta}{r} \right)
\]
\[
\frac{1}{r_2} \approx \frac{1}{r} \left( 1 - \frac{a \cos \theta}{r} \right)
\]
Thus, the potential \( V \) can be expressed as:
\[
V = \frac{q}{4\pi \epsilon_0} \cdot \frac{2a \cos \theta}{r^2}
\]
Since \( \mathbf{p} \cdot \hat{r} = p \cos \theta \), we can write:
\[
V = \frac{1}{4\pi \epsilon_0} \cdot \frac{p}{r^2}
\]
This is the expression for the potential due to an electric dipole.