An alkyl bromide \( X (\mathrm{C}_5\mathrm{H}_{11}\mathrm{Br}) \) undergoes hydrolysis in a two-step mechanism.
\( X \) is converted to a Grignard reagent and then reacted with \( \mathrm{CO}_2 \) in dry ether followed by acidification to give \( Y \).
What is \( Y \)?
Step 1: Known Information.
The starting compound is an alkyl bromide, \( X = \text{C}_5\text{H}_{11}\text{Br} \).
The reaction involves the following steps:
1. Conversion of \( X \) to a Grignard reagent.
2. Reaction of the Grignard reagent with \( \text{CO}_2 \).
3. Acidification to form the final product \( Y \).
Step 2: Conversion to Grignard Reagent.
The alkyl bromide \( \text{C}_5\text{H}_{11}\text{Br} \) reacts with magnesium metal in diethyl ether to form a Grignard reagent: $$ \text{C}_5\text{H}_{11}\text{Br} + \text{Mg} \rightarrow \text{C}_5\text{H}_{11}\text{MgBr} $$ The Grignard reagent is \( \text{C}_5\text{H}_{11}\text{MgBr} \).
Step 3: Reaction with Carbon Dioxide.
The Grignard reagent \( \text{C}_5\text{H}_{11}\text{MgBr} \) reacts with carbon dioxide (\( \text{CO}_2 \)) in dry ether to form a carboxylic acid derivative: $$ \text{C}_5\text{H}_{11}\text{MgBr} + \text{CO}_2 \rightarrow \text{C}_5\text{H}_{11}\text{COOMgBr} $$ This intermediate is a magnesium salt of a carboxylic acid.
Step 4: Acidification.
Upon acidification (e.g., with dilute acid), the magnesium salt is converted into the corresponding carboxylic acid: $$ \text{C}_5\text{H}_{11}\text{COOMgBr} + \text{H}^+ \rightarrow \text{C}_5\text{H}_{11}\text{COOH} $$ The final product \( Y \) is a carboxylic acid with the same carbon chain as the original alkyl bromide.
Step 5: Identify the Structure of \( Y \).
The structure of \( X \) is given as \( \text{C}_5\text{H}_{11}\text{Br} \), which implies that \( X \) is a primary, secondary, or tertiary alkyl bromide.
However, the problem does not specify the exact structure of \( X \). Based on the options provided, we need to identify the correct carboxylic acid structure.
From the options:
1. \( \text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\text{COOH} \)
2. \( \text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{COOH} \)
3. \( \text{CH}_3\text{CH}_2\text{CH}(\text{CH}_3)\text{CH}_2\text{COOH} \)
4. \( \text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{COOH} \)
The correct structure must match the general formula \( \text{C}_5\text{H}_{11}\text{COOH} \). Among the options, the correct structure is: $$ \boxed{\text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{COOH}} $$
If \( z \) and \( \omega \) are two non-zero complex numbers such that \( |z\omega| = 1 \) and
\[ \arg(z) - \arg(\omega) = \frac{\pi}{2}, \]
Then the value of \( \overline{z\omega} \) is:
If \( x^a y^b = e^m, \)
and
\[ x^c y^d = e^n, \]
and
\[ \Delta_1 = \begin{vmatrix} m & b \\ n & d \\ \end{vmatrix}, \quad \Delta_2 = \begin{vmatrix} a & m \\ c & n \\ \end{vmatrix}, \quad \Delta_3 = \begin{vmatrix} a & b \\ c & d \\ \end{vmatrix} \]
Then the values of \( x \) and \( y \) respectively (where \( e \) is the base of the natural logarithm) are:
In \(\triangle ABC\), if \(A = 30^\circ\) and
\[ \frac{b}{(\sqrt{3}+1)^2 + 2(\sqrt{2} - 1)}, \quad \frac{c}{(\sqrt{3}+1)^2 - 2(\sqrt{2} - 1)}, \]
Then find the angle \(B\).
Let \(\mathbf{a}, \mathbf{b}, \mathbf{c}\) be position vectors of three non-collinear points on a plane. If
\[ \alpha = \left[\mathbf{a} \quad \mathbf{b} \quad \mathbf{c}\right] \text{ and } \mathbf{r} = \mathbf{a} \times \mathbf{b} - \mathbf{c} \times \mathbf{b} - \mathbf{a} \times \mathbf{c}, \]
Then \(\frac{|\alpha|}{|\mathbf{r}|}\) represents:
If
\[ P = (a \times \mathbf{i})^2 + (a \times \mathbf{j})^2 + (a \times \mathbf{k})^2 \]
and
\[ Q = (a \cdot \mathbf{i})^2 + (a \cdot \mathbf{j})^2 + (a \cdot \mathbf{k})^2, \]
Then find the relation between \(P\) and \(Q\).