Remember the truth tables for basic logical operations (and, or, not, implication). A contradiction is always false, and a tautology is always true
For \( S_1 : (p \rightarrow q) \land (p \land \sim q) \), the truth table is:
| \( p \) | \( q \) | \( p \rightarrow q \) | \( p \land \sim q \) | \( S_1 \) |
|---|---|---|---|---|
| T | T | T | F | F |
| T | F | F | T | F |
| F | T | T | F | F |
| F | F | T | F | F |
From the truth table, \( S_1 \) is a Contradiction, as \( S_1 \) is always false.
For \( S_2 : (\sim p \land q) \lor (p \land \sim q) \), the truth table is:
| \( p \) | \( q \) | \( p \land q \) | \( \sim p \land q \) | \( p \land \sim q \) | \( (\sim p \land q) \lor (p \land \sim q) \) | \( S_2 \) |
|---|---|---|---|---|---|---|
| T | T | T | F | F | F | F |
| T | F | F | F | T | T | T |
| F | T | F | T | F | T | T |
| F | F | F | F | F | F | F |
From the truth table, \( S_2 \) is a Tautology, as \( S_2 \) is always true.
Hence:
\( S_1 \) is Contradiction, and \( S_2 \) is Tautology.
Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.