
Apply Pythagoras Theorem,
\(4r^2 = l^2+b^2\)
Area \(= lb\)
Perimeter, \(P = 2(l+b)\)
\(\frac p2 = l+b\)
Squaring both side,
\(\frac {p^2}{4} = l^2+b^2+2lb\)
\(\frac {p^2}{4} = 4r^2+2lb\)
\(\frac {p^2}{8} - 2r^2 = lb\)
Then, area of the rectangle = \(\frac {p^2}{8} - 2r^2\)
So, the correct option is (B): \(\frac {p^2}{8} - 2r^2\)
For any natural number $k$, let $a_k = 3^k$. The smallest natural number $m$ for which \[ (a_1)^1 \times (a_2)^2 \times \dots \times (a_{20})^{20} \;<\; a_{21} \times a_{22} \times \dots \times a_{20+m} \] is: