Use Blasius boundary layer thickness formula at the trailing edge.
The Blasius solution for boundary layer thickness at a distance \( x \) from the leading edge is: \[ \delta(x) = \frac{5.0x}{\sqrt{{Re}_x}}, \quad {where } {Re}_x = \frac{Ux}{\nu} \] Given: \( U = 2 \, {m/s}, \quad x = 0.5 \, {m}, \quad \nu = 1.5 \times 10^{-5} \, {m}^2/{s} \) \[ {Re}_x = \frac{2 \times 0.5}{1.5 \times 10^{-5}} = \frac{1}{1.5 \times 10^{-5}} = 66666.67 \] \[ \delta = \frac{5 \times 0.5}{\sqrt{66666.67}} = \frac{2.5}{258.2} \approx 0.0094 \, {m} \] \[ \delta = 9.40 \, {mm} \]
An electrical wire of 2 mm diameter and 5 m length is insulated with a plastic layer of thickness 2 mm and thermal conductivity \( k = 0.1 \) W/(m·K). It is exposed to ambient air at 30°C. For a current of 5 A, the potential drop across the wire is 2 V. The air-side heat transfer coefficient is 20 W/(m²·K). Neglecting the thermal resistance of the wire, the steady-state temperature at the wire-insulation interface __________°C (rounded off to 1 decimal place).
GIVEN:
Kinematic viscosity: \( \nu = 1.0 \times 10^{-6} \, {m}^2/{s} \)
Prandtl number: \( {Pr} = 7.01 \)
Velocity boundary layer thickness: \[ \delta_H = \frac{4.91 x}{\sqrt{x \nu}} \]
Consider two identical tanks with a bottom hole of diameter \( d \). One tank is filled with water and the other tank is filled with engine oil. The height of the fluid column \( h \) is the same in both cases. The fluid exit velocity in the two tanks are \( V_1 \) and \( V_2 \). Neglecting all losses, which one of the following options is correct?
Bird : Nest :: Bee : __________
Select the correct option to complete the analogy.
A closed system is undergoing a reversible process 1–P–2 from state 1 to 2, as shown in the figure, where X and Y are thermodynamic properties. An irreversible process 2–Q–1 brings the system back from 2 to 1. The net change in entropy of the system and surroundings during the above-mentioned cycle are _______ respectively.
A ship of 3300 tonne displacement is undergoing an inclining experiment in seawater of density 1025 kg/m\(^3\). A mass of 6 tonne is displaced transversely by 12 m as shown in the figure. This results in a 0.12 m deflection of a 11 m long pendulum suspended from the centerline. The transverse metacenter of the ship is located at 7.25 m above the keel.
The distance of the center of gravity from the keel is ________ m (rounded off to two decimal places).