$\text{1. Define Variables and Formulas}$
Total Deposit Base ($D$): $\text{Rs. } 256412$
Initial CRR ($\text{CRR}_1$): $4.5\% = 0.045$
Final CRR ($\text{CRR}_2$): $3.5\% = 0.035$
The maximum money supply created by a deposit base in the banking system is determined by the Money Multiplier ($\text{MM}$):
$$\text{Money Multiplier } (\text{MM}) = \frac{1}{\text{CRR}}$$
The total money supply ($\text{MS}$) created from the deposit base ($D$) is:
$$\text{MS} = D \times \text{MM}$$
The additional money supply ($\Delta \text{MS}$) generated due to the change in $\text{CRR}$ is the difference between the maximum money supply possible under the new $\text{CRR}$ and the initial $\text{CRR}$.
$$\Delta \text{MS} = \text{MS}_2 - \text{MS}_1 = D \times \left(\frac{1}{\text{CRR}_2} - \frac{1}{\text{CRR}_1}\right)$$
$\text{2. Calculate Money Multipliers}$
$$\text{Initial Money Multiplier } (\text{MM}_1) = \frac{1}{0.045} \approx 22.2222$$
$$\text{Final Money Multiplier } (\text{MM}_2) = \frac{1}{0.035} \approx 28.5714$$
$\text{3. Calculate Additional Money Supply}$
$$\Delta \text{MS} = 256412 \times \left(\frac{1}{0.035} - \frac{1}{0.045}\right)$$
First, simplify the term in the parenthesis:
$$\frac{1}{0.035} - \frac{1}{0.045} = \frac{0.045 - 0.035}{0.035 \times 0.045} = \frac{0.01}{0.001575}$$
$$\frac{0.01}{0.001575} = \frac{10000}{1575} = \frac{400}{63} \approx 6.34920635$$
Now, multiply by the total deposit base ($D$):
$$\Delta \text{MS} = 256412 \times \frac{400}{63}$$
$$\Delta \text{MS} \approx 256412 \times 6.34920635$$
$$\Delta \text{MS} \approx 1628012.6984$$
$\text{4. Final Answer}$
Rounding the result to the nearest integer:
$$\Delta \text{MS} \approx 1628013$$
$$\text{The additional money supply generated by ACD Bank is } \mathbf{1628013}$$
The sum of the payoffs to the players in the Nash equilibrium of the following simultaneous game is ............
| Player Y | ||
|---|---|---|
| C | NC | |
| Player X | X: 50, Y: 50 | X: 40, Y: 30 |
| X: 30, Y: 40 | X: 20, Y: 20 | |