According to Bohr’s theory, the angular momentum (moment of momentum) \( L \) of an electron in the \( n \)-th orbit is quantized and given by:
\[ L = \frac{n h}{2\pi}, \] where \( h \) is Planck’s constant and \( n \) is the orbit number.
For an electron in the 4th orbit (\( n = 4 \)):
\[ L = \frac{4h}{2\pi} = \frac{2h}{\pi}. \]
Answer: \(\frac{2h}{\pi}\)
Given below are two statements:
Statement (I) : The dimensions of Planck’s constant and angular momentum are same.
Statement (II) : In Bohr’s model, electron revolves around the nucleus in those orbits for which angular momentum is an integral multiple of Planck’s constant.
In the light of the above statements, choose the most appropriate answer from the options given below:
Given below are two statements:
Statement (I):
are isomeric compounds.
Statement (II):
are functional group isomers.
In the light of the above statements, choose the correct answer from the options given below:
Given below are two statements: one is labelled as Assertion \(A\) and the other as Reason \(R\):
Assertion \(A\): A sound wave has higher speed in solids than in gases.
Reason \(R\): Gases have higher value of Bulk modulus than solids.
In the experiment for measurement of viscosity \( \eta \) of a given liquid with a ball having radius \( R \), consider following statements:
A. Graph between terminal velocity \( V \) and \( R \) will be a parabola.
B. The terminal velocities of different diameter balls are constant for a given liquid.
C. Measurement of terminal velocity is dependent on the temperature.
D. This experiment can be utilized to assess the density of a given liquid.
E. If balls are dropped with some initial speed, the value of \( \eta \) will change.