ABCD is a rectangle in which diagonal AC bisects ∠ A as well as ∠ C. Show that:
(i) ABCD is a square
(ii) diagonal BD bisects ∠B as well as ∠D
(i) It is given that ABCD is a rectangle.
∠A =∠C
\(⇒ \frac{1}{2}∠A=\frac{1}{2}∠C\)
\(⇒∠DCA=∠DCA\) (AC bisects ∠A and ∠C)
CD = DA (Sides opposite to equal angles are also equal)
However, DA = BC and AB = CD (Opposite sides of a rectangle are equal)
∠AB = BC = CD = DA
ABCD is a rectangle and all of its sides are equal.
Hence, ABCD is a square.
(ii) Let us join BD.
In ∆BCD,
BC = CD (Sides of a square are equal to each other)
∠CDB = ∠CBD (Angles opposite to equal sides are equal)
However, ∠CDB = ∠BD (Alternate interior angles for AB || CD)
∠CBD = ∠ABD
∠BD bisects ∠B.
Also, CBD = ADB (Alternate interior angles for BC || AD)
∠CDB = ∠ABD
∠BD bisects ∠D.
In parallelogram ABCD, two points P and Q are taken on diagonal BD such that DP = BQ (see Fig. 8.12). Show that:
(i) ∆APD ≅ ∆CQB
(ii) AP = CQ
(iii) ∆AQB ≅∆CPD
(iv) AQ = CP
(v) APCQ is a parallelogram
A driver of a car travelling at \(52\) \(km \;h^{–1}\) applies the brakes Shade the area on the graph that represents the distance travelled by the car during the period.
Which part of the graph represents uniform motion of the car?