To solve the problem, we use the properties of similar triangles.
1. Understanding the Concept:
Given that $ \triangle ABC \sim \triangle PQR $, their corresponding angles are equal:
$ \angle A = \angle P $, $ \angle B = \angle Q $, $ \angle C = \angle R $
2. Given:
$ \angle P = 60^\circ $, $ \angle Q = 75^\circ $
Since $ \angle A = \angle P $,
$ \angle A = 60^\circ $
Final Answer:
The value of $ \angle A $ is $ {60^\circ} $
If \( \triangle ODC \sim \triangle OBA \) and \( \angle BOC = 125^\circ \), then \( \angle DOC = ? \)