Perimeter: \( 2(l + w) = 36 \Rightarrow l + w = 18 \Rightarrow w = 18 - l \).
Area: \( A = l \cdot w = l (18 - l) = 18l - l^2 \).
Maximize: \( A(l) = 18l - l^2 \).
\[ \frac{dA}{dl} = 18 - 2l = 0 \Rightarrow l = 9. \] \[ \frac{d^2 A}{dl^2} = -2 < 0, \text{ maximum at } l = 9. \] \[ w = 18 - 9 = 9. \] Area: \( 9 \cdot 9 = 81 \, \text{m}^2 \).
Answer: Dimensions: \( 9 \, \text{m} \times 9 \, \text{m} \).
Let \( f: \mathbb{R} \to \mathbb{R} \) \(\text{ be any function defined as }\) \[ f(x) = \begin{cases} x^\alpha \sin \left( \frac{1}{x^\beta} \right) & \text{for } x \neq 0, \\ 0 & \text{for } x = 0, \end{cases} \] where \( \alpha, \beta \in \mathbb{R} \). Which of the following is true? \( \mathbb{R} \) denotes the set of all real numbers.