Why is \( Cr^{2+} \) strongly reducing while \( Mn^{3+} \) is strongly oxidizing?
To solve the problem, we need to explain why \( Cr^{2+} \) is strongly reducing while \( Mn^{3+} \) is strongly oxidizing.
1. Analyze \( Cr^{2+} \) as a Reducing Agent:
A species is reducing if it easily loses electrons (is oxidized). \( Cr^{2+} \) has the electronic configuration \( [Ar] 3d^4 \). When oxidized to \( Cr^{3+} \), it becomes \( [Ar] 3d^3 \), which is a half-filled \( t_{2g}^3 \) configuration in octahedral complexes, highly stable due to exchange energy and symmetry. The standard reduction potential \( E^0 (Cr^{3+}/Cr^{2+}) = -0.41 \, \text{V} \) is negative, indicating \( Cr^{2+} \rightarrow Cr^{3+} + e^- \) is favorable, making \( Cr^{2+} \) a strong reducing agent.
2. Analyze \( Mn^{3+} \) as an Oxidizing Agent:
A species is oxidizing if it easily gains electrons (is reduced). \( Mn^{3+} \) has the configuration \( [Ar] 3d^4 \). When reduced to \( Mn^{2+} \), it becomes \( [Ar] 3d^5 \), a half-filled configuration, which is very stable. The standard reduction potential \( E^0 (Mn^{3+}/Mn^{2+}) = +1.51 \, \text{V} \) is highly positive, indicating \( Mn^{3+} + e^- \rightarrow Mn^{2+} \) is favorable, making \( Mn^{3+} \) a strong oxidizing agent.
Final Answer:
\( Cr^{2+} \) is strongly reducing because it oxidizes to the stable \( Cr^{3+} \) (\( 3d^3 \), half-filled \( t_{2g} \)), with a negative reduction potential (\( E^0 = -0.41 \, \text{V} \)). \( Mn^{3+} \) is strongly oxidizing because it reduces to the stable \( Mn^{2+} \) (\( 3d^5 \), half-filled), with a high positive reduction potential (\( E^0 = +1.51 \, \text{V} \)).
Which of the following Statements are NOT true about the periodic table?
A. The properties of elements are a function of atomic weights.
B. The properties of elements are a function of atomic numbers.
C. Elements having similar outer electronic configuration are arranged in the same period.
D. An element's location reflects the quantum numbers of the last filled orbital.
E. The number of elements in a period is the same as the number of atomic orbitals available in the energy level that is being filled.
Match List-I with List-II:
Match the LIST-I with LIST-II.
| LIST-I | LIST-II | ||
| A. | Pnicogen (group 15) | I. | Ts |
| B. | Chalcogen (group 16) | II. | Og |
| C. | Halogen (group 17) | III. | Lv |
| D. | Noble gas (group 18) | IV. | Mc |
Choose the correct answer from the options given below :
Which of the following statements are correct?
A. The process of the addition an electron to a neutral gaseous atom is always exothermic
B. The process of removing an electron from an isolated gaseous atom is always endothermic
C. The 1st ionization energy of the boron is less than that of the beryllium
D. The electronegativity of C is 2.5 in $ CH_4 $ and $ CCl_4 $
E. Li is the most electropositive among elements of group 1
Choose the correct answer from the options given below

| S. No. | Particulars | Amount (in ₹ crore) |
|---|---|---|
| (i) | Operating Surplus | 3,740 |
| (ii) | Increase in unsold stock | 600 |
| (iii) | Sales | 10,625 |
| (iv) | Purchase of raw materials | 2,625 |
| (v) | Consumption of fixed capital | 500 |
| (vi) | Subsidies | 400 |
| (vii) | Indirect taxes | 1,200 |