Step 1: Chromium in the \( Cr^{2+} \) state has an electronic configuration of \( [Ar] 3d^4 \), which is relatively unstable and easily oxidizes to the more stable \( Cr^{3+} \) configuration, \( [Ar] 3d^5 \). This makes \( Cr^{2+} \) a strong reducing agent because it readily loses electrons. On the other hand, \( Mn^{3+} \) has an electronic configuration of \( [Ar] 3d^4 \), which is also unstable. It is prone to gaining electrons to become \( Mn^{2+} \), which has a more stable \( [Ar] 3d^5 \) configuration. Thus, \( Mn^{3+} \) is a strong oxidizing agent because it readily accepts electrons.
Step 2: Thus, the differences in the electronic configurations of \( Cr^{2+} \) and \( Mn^{3+} \) explain why \( Cr^{2+} \) is a strong reducing agent and \( Mn^{3+} \) is a strong oxidizing agent. \bigskip
List - I(Block/group in periodic table) | List - II(Element) |
---|---|
(A) Lanthanoid | (I) Ce |
(B) d-block element | (II) As |
(C) p-block element | (III) Cs |
(D) s-block element | (IV) Mn |
(a) State the following:
(i) Kohlrausch law of independent migration of ions
A solution of glucose (molar mass = 180 g mol\(^{-1}\)) in water has a boiling point of 100.20°C. Calculate the freezing point of the same solution. Molal constants for water \(K_f\) and \(K_b\) are 1.86 K kg mol\(^{-1}\) and 0.512 K kg mol\(^{-1}\) respectively.
Write the reactions involved when D-glucose is treated with the following reagents: (a) HCN (b) Br\(_2\) water
Identify A and B in each of the following reaction sequence:
(a) \[ CH_3CH_2Cl \xrightarrow{NaCN} A \xrightarrow{H_2/Ni} B \]
(b) \[ C_6H_5NH_2 \xrightarrow{NaNO_2/HCl} A \xrightarrow{C_6H_5NH_2} B \]
Would you expect benzaldehyde to be more reactive or less reactive in nucleophilic addition reactions than propanal? Justify your answer.