$\alpha=\alpha_{0}\left(1-\frac{t}{5}\right)$
At t = 0, $\alpha=\alpha_{0}\quad\therefore\quad\alpha_{0}$ = 50 rad/s$^{2}$
$\frac{d\omega}{dt}=\alpha_{0}\left(1-\frac{1}{5}\right)$
$\therefore\,\,\int^{\omega}_{0}\,d\omega=\alpha_{0}\int^{5}_{0}\left(1-\frac{t}{5}\right)dt\,\Rightarrow\,\omega=\alpha_{0}\left[t-\frac{t^{2}}{10}\right]_{0}^{5}$
$=50\left(5-\frac{25}{10}\right)$ rad/s =125 rad/s