Step 1: Recall the formula for inductance per unit length of a solenoid
The inductance per unit length $\frac{L}{l}$ of a solenoid is given by:
\[
\frac{L}{l} = \mu_0 n^2 A
\]
where:
$\mu_0 = 4\pi \times 10^{-7} \, \text{T·m/A}$ (permeability of free space),
$n = 200 \, \text{turns/m}$ (number of turns per unit length),
$A$ is the cross-sectional area of the solenoid.
\vspace{0.3cm}
Step 2: Calculate the cross-sectional area
Given radius $r = 10 \, \text{cm} = 0.1 \, \text{m}$, the area is:
\[
A = \pi r^2 = \pi (0.1)^2 = 0.01 \pi \, \text{m}^2
\]
\vspace{0.3cm}
Step 3: Plug values into the formula
Substitute all values:
\[
\frac{L}{l} = (4\pi \times 10^{-7}) \cdot (200)^2 \cdot 0.01 \pi
\]
Calculate step-by-step:
\[
n^2 = 200^2 = 40000
\]
\[
\mu_0 n^2 = 4\pi \times 10^{-7} \times 40000 = 16\pi \times 10^{-3}
\]
Multiply by $A = 0.01 \pi$:
\[
\frac{L}{l} = 16\pi \times 10^{-3} \times 0.01 \pi = 0.16 \pi^2 \times 10^{-3}
\]
Using $\pi^2 \approx 9.87$:
\[
\frac{L}{l} \approx 0.16 \times 9.87 \times 10^{-3} \approx 1.58 \times 10^{-3} \, \text{H/m}
\]
Or keeping exact form:
\[
\frac{L}{l} = 8 \pi \times 10^{-3} \, \text{H/m}
\]
\vspace{0.3cm}
Step 4: Conclusion
The inductance per unit length of the solenoid is:
\[
{8 \pi \times 10^{-3} \, \text{H/m}}
\]