A watershed has an area of 74 km\(^2\). The stream network within this watershed consists of three different stream orders. The stream lengths in each order are as follows: Ist order streams: 3 km, 2.5 km, 4 km, 3 km, 2 km, 5 km
IInd order streams: 10 km, 15 km, 7 km
IIIrd order streams: 30 km
The drainage density of the watershed is _________km/km\(^2\) (Round off to two decimal places)
Length of the streets, in km, are shown on the network. The minimum distance travelled by the sweeping machine for completing the job of sweeping all the streets is ________ km. (rounded off to nearest integer)
A particle dispersoid has 1510 spherical particles of uniform density. An air purifier is proposed to be used to remove these particles. The diameter-specific number of particles in the dispersoid, along with the number removal efficiency of the proposed purifier is shown in the following table:
The overall mass removal efficiency of the proposed purifier is ________% (rounded off to one decimal place).
A color model is shown in the figure with color codes: Yellow (Y), Magenta (M), Cyan (Cy), Red (R), Blue (Bl), Green (G), and Black (K). Which one of the following options displays the color codes that are consistent with the color model?
While doing Bayesian inference, consider estimating the posterior distribution of the model parameter (m), given data (d). Assume that Prior and Likelihood are proportional to Gaussian functions given by \[ {Prior} \propto \exp(-0.5(m - 1)^2) \] \[ {Likelihood} \propto \exp(-0.5(m - 3)^2) \]
The mean of the posterior distribution is (Answer in integer)