Step 1: Calculate buoyancy factor.
Buoyancy factor = \(\dfrac{\rho_{mud}}{\rho_{steel}}\).
Here,
\[
\rho_{mud} = 10 \, ppg, \quad \rho_{steel} = 65.5 \, ppg
\]
\[
BF = 1 - \frac{\rho_{mud}}{\rho_{steel}} = 1 - \frac{10}{65.5} = 0.847
\]
Step 2: Hook load decrease.
Decrease in hook load due to buoyancy:
\[
\Delta HL = WOB \times \frac{\rho_{mud}}{\rho_{steel}}
\]
\[
\Delta HL = 50000 \times \frac{10}{65.5} = 50000 \times 0.1527
\]
\[
\Delta HL \approx 7635 \, lbf
\]
But considering dynamic ECD = 10.75 ppg:
\[
\Delta HL = 50000 \times \frac{10.75}{65.5} = 50000 \times 0.1641 = 8205 \, lbf
\]
Step 3: Additional correction for circulation loss.
Given circulation pressure loss = 110 psi. Equivalent height:
\[
h = \frac{110}{0.052 \times 65.5} \approx 32.9 \, ft
\]
This adds ~570 lbf buoyancy adjustment.
Final Answer:
\[
\boxed{8205 \, lbf}
\]