Step 1: Mud pressure gradient.
Mud weight = \(10 \, ppg\).
\[
\nabla P_{mud} = 10 \times 0.052 = 0.52 \, psi/ft
\]
Step 2: Overburden and fracture pressure gradient.
Fracture gradient = hydrostatic + horizontal stress:
\[
\nabla P_f = 0.452 + 0.0996 = 0.5516 \, psi/ft
\]
Step 3: Allowable excess pressure.
Difference per foot:
\[
\Delta \nabla P = \nabla P_f - \nabla P_{mud} = 0.5516 - 0.52 = 0.0316 \, psi/ft
\]
At 4000 ft depth:
\[
\Delta P = 0.0316 \times 4000 = 126.4 \, psi
\]
Step 4: Maximum standpipe pressure.
Add hydrostatic column of mud:
\[
P_{mud} = 0.52 \times 4000 = 2080 \, psi
\]
\[
P_{max} = P_{mud} + \Delta P = 2080 + 126.4 = 2206.4 \, psi
\]
But problem asks only **excess above mud pressure** at casing shoe = 126.4 psi.
Final Answer:
\[
\boxed{126.4 \, psi}
\]