Radius $r=3.5$ cm. Total height $=15.5$ cm $\Rightarrow$ cone height $h=15.5-r=12$ cm.
Slant height of cone: $l=\sqrt{r^{2}+h^{2}}=\sqrt{3.5^{2}+12^{2}}=\sqrt{156.25}=12.5$ cm.
Total Surface Area (TSA):
TSA $=$ curved surface of cone $+$ base of cone $+$ curved surface of hemisphere
$\displaystyle =\pi r l+\pi r^{2}+2\pi r^{2}=\pi r l+3\pi r^{2}$.
With $r=3.5$, $l=12.5$ and $\pi=\dfrac{22}{7}$,
$\displaystyle \text{TSA}=\frac{22}{7}\cdot3.5\cdot12.5+3\cdot\frac{22}{7}\cdot(3.5)^{2}
=137.5+115.5=253\ \text{cm}^{2}.$
[1mm]
\[
\boxed{\text{TSA}=253\ \text{cm}^{2}}
\]
Volume:
$V=\underbrace{\tfrac{1}{3}\pi r^{2}h}_{\text{cone}}+\underbrace{\tfrac{2}{3}\pi r^{3}}_{\text{hemisphere}}
=\tfrac{1}{3}\pi(3.5)^{2}(12)+\tfrac{2}{3}\pi(3.5)^{3}
=49\pi+\frac{343}{12}\pi
=\frac{931}{12}\pi\ \text{cm}^{3}.
$
With $\pi=\dfrac{22}{7}$, $\displaystyle V=\frac{10241}{42}\approx 243.83\ \text{cm}^{3}.$
[1mm]
\[
\boxed{\text{Volume}=\frac{931\pi}{12}\ \text{cm}^{3}\ \ (\approx 243.83\ \text{cm}^{3})}
\]