Step 1: Apply ideal gas law.
\[
pV = n R_u T
\]
\[
n_{total} = \frac{pV}{R_u T}
\]
Step 2: Substitute given values.
\[
p = 100 \times 10^3 \, Pa, V = 4 \, m^3, T = 300 \, K
\]
\[
n_{total} = \frac{100 \times 10^3 \times 4}{8.314 \times 10^3 \times 300}
\]
\[
n_{total} = 0.1602 \, kmol
\]
Step 3: Initial moles of each component.
Hydrogen = \(0.6 \times 0.1602 = 0.0961 \, kmol\)
Nitrogen = \(0.4 \times 0.1602 = 0.0641 \, kmol\)
Step 4: Condition after nitrogen addition.
Let extra nitrogen added = \(n_x\).
Final nitrogen mole fraction = 0.5:
\[
\frac{0.0641 + n_x}{0.1602 + n_x} = 0.5
\]
Step 5: Solve for \(n_x\).
\[
0.0641 + n_x = 0.5(0.1602 + n_x)
\]
\[
0.0641 + n_x = 0.0801 + 0.5n_x
\]
\[
0.5n_x = 0.016 \Rightarrow n_x = 0.032
\]
Step 6: Final check.
Extra nitrogen = \(0.032 \, kmol\).
\[
\boxed{0.032 \, kmol}
\]