The work done is:
\[ W = (\text{Buoyancy force} - \text{Weight}) \cdot d = \rho g \cdot \frac{4}{3} \pi r^3 - mg \cdot d \] Substituting: \[ W = \frac{4}{3} \cdot \pi \cdot \left( 3 \times 10^{-2} \right)^3 \cdot 10 \cdot 0.7 \cdot 1000 - \frac{3}{4} = 0.077 \, \text{J} \]
\[ \frac{1}{2} m v^2 = W \quad \Rightarrow \quad v = \sqrt{\frac{2W}{m}} = 7 \, \text{m/s} \] Also, the viscous force is maximum when \( v = 7 \, \text{m/s} \), hence: \[ (F_v)_{\text{max}} = 6 \pi \eta r v = 6 \times 22 \times 7 \times 10^{-3} \times 3 \times 10^{-2} = 18 \times 11 \times 10^{-5} \, \text{N} \]
\[ \frac{F_{\text{net}}}{(F_v)_{\text{max}}} = \frac{500}{9} \]
Options (1) and (2), (3) are correct.