Given: The magnetic moment of the straight strip is $44 \, \mathrm{Am}^2$. The strip is bent into a semicircular shape.
When a straight magnetic strip is bent into a semicircular shape, the magnetic moment changes based on the geometry. The formula for the magnetic moment $M$ of a circular loop is given by:
\[ M = I \times A, \]
where $I$ is the current and $A$ is the area of the loop. For a semicircular loop, the area is half of the area of a full circle.
The magnetic moment $M'$ after bending is:
\[ M' = \frac{M}{2}. \]
So, the magnetic moment after bending the strip into a semicircular shape is:
\[ M' = \frac{44}{2} = 28 \, \mathrm{Am}^2. \]
Thus, the correct answer is 28.
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: