Given: The magnetic moment of the straight strip is $44 \, \mathrm{Am}^2$. The strip is bent into a semicircular shape.
When a straight magnetic strip is bent into a semicircular shape, the magnetic moment changes based on the geometry. The formula for the magnetic moment $M$ of a circular loop is given by:
\[ M = I \times A, \]
where $I$ is the current and $A$ is the area of the loop. For a semicircular loop, the area is half of the area of a full circle.
The magnetic moment $M'$ after bending is:
\[ M' = \frac{M}{2}. \]
So, the magnetic moment after bending the strip into a semicircular shape is:
\[ M' = \frac{44}{2} = 28 \, \mathrm{Am}^2. \]
Thus, the correct answer is 28.
A current-carrying coil is placed in an external uniform magnetic field. The coil is free to turn in the magnetic field. What is the net force acting on the coil? Obtain the orientation of the coil in stable equilibrium. Show that in this orientation the flux of the total field (field produced by the loop + external field) through the coil is maximum.
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to:
For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).