Step 1: The tension in the string depends on both the centripetal force and the gravitational force acting on the stone. At the highest position, the stone is moving upwards, and gravity opposes the tension in the string.
Step 2: The tension in the string is given by the equation: \[ T = \frac{mv^2}{r} - mg. \] At the highest position, the tension is the smallest because the gravitational force acts in the same direction as the centripetal force.
Step 3: Hence, the tension in the string is minimum at the highest point of the circular path.
A Wheatstone bridge is initially at room temperature and all arms of the bridge have same value of resistances \[ (R_1=R_2=R_3=R_4). \] When \(R_3\) resistance is heated, its resistance value increases by \(10%\). The potential difference \((V_a-V_b)\) after \(R_3\) is heated is _______ V. 
The heat generated in 1 minute between points A and B in the given circuit, when a battery of 9 V with internal resistance of 1 \(\Omega\) is connected across these points is ______ J. 
The following diagram shows a Zener diode as a voltage regulator. The Zener diode is rated at \(V_z = 5\) V and the desired current in load is 5 mA. The unregulated voltage source can supply up to 25 V. Considering the Zener diode can withstand four times of the load current, the value of resistor \(R_s\) (shown in circuit) should be_______ \(\Omega\).
An object is projected with kinetic energy K from point A at an angle 60° with the horizontal. The ratio of the difference in kinetic energies at points B and C to that at point A (see figure), in the absence of air friction is : 