Step 1: Define parameters and equations.
The discharge, \( Q \), for a channel section is calculated using Chezy's formula:
\[
Q = C \cdot A \cdot R^{1/2} \cdot S^{1/2},
\]
where:
- \( C \) = Chezy’s coefficient (\( 150 \, \text{m}^{1/2}/\text{s} \)),
- \( A \) = cross-sectional area of flow (m\(^2\)),
- \( R \) = hydraulic radius (m),
- \( S \) = bed slope (\( 1/200 = 0.005 \)).
For a triangular channel section, the geometry of the cross-sectional area and wetted perimeter is:
\[
A = \frac{1}{2} \cdot b \cdot y,
\]
where \( b \) is the top width. From the given figure, \( b = 3y \).
The wetted perimeter, \( P \), is:
\[
P = 2\sqrt{1.5^2 + y^2}.
\]
The hydraulic radius \( R \) is given by:
\[
R = \frac{A}{P}.
\]
Step 2: Substitute parameters into the discharge formula.
From geometry:
\[
A = \frac{1}{2} \cdot 3y \cdot y = 1.5y^2.
\]
The wetted perimeter is:
\[
P = 2\sqrt{1.5^2 + y^2} = 2\sqrt{2.25 + y^2}.
\]
The hydraulic radius \( R \) becomes:
\[
R = \frac{1.5y^2}{2\sqrt{2.25 + y^2}}.
\]
Substitute \( A \), \( R \), and \( S \) into the discharge equation:
\[
Q = 150 \cdot 1.5y^2 \cdot \left(\frac{1.5y^2}{2\sqrt{2.25 + y^2}}\right)^{1/2} \cdot 0.005^{1/2}.
\]
Step 3: Simplify and solve for \( y \).
Given \( Q = 20 \):
\[
20 = 150 \cdot 1.5y^2 \cdot \left(\frac{1.5y^2}{2\sqrt{2.25 + y^2}}\right)^{1/2} \cdot 0.005^{1/2}.
\]
Rearrange the equation to isolate \( y \). Using numerical methods, solve for \( y \). The solution converges to:
\[
y \approx 2.12 \, \text{m}.
\]
Conclusion: The normal depth of flow \( y \) is approximately \( 2.12 \, \text{m} \).