Step 1: Define the terms and equations.
For a hydraulic jump, the relationship between the upstream depth (\( y_1 \)) and the downstream depth (\( y_2 \)) is given by the equation:
\[
y_2 = \frac{y_1}{2} \left( \sqrt{1 + 8 \text{Fr}_1^2} - 1 \right),
\]
where:
- \( y_1 = 0.5 \, \text{m} \) is the initial flow depth,
- \( \text{Fr}_1 \) is the Froude number, calculated as:
\[
\text{Fr}_1 = \frac{q}{y_1 \sqrt{g y_1}},
\]
where:
- \( q = 7.5 \, \text{m}^3/\text{s}/\text{m} \) (unit discharge),
- \( g = 9.81 \, \text{m}/\text{s}^2 \) (acceleration due to gravity).
Step 2: Calculate the Froude number (\( \text{Fr}_1 \)).
Substitute the known values into the equation for \( \text{Fr}_1 \):
\[
\text{Fr}_1 = \frac{7.5}{0.5 \cdot \sqrt{9.81 \cdot 0.5}}.
\]
Simplify:
\[
\text{Fr}_1 = \frac{7.5}{0.5 \cdot \sqrt{4.905}} = \frac{7.5}{0.5 \cdot 2.214} = \frac{7.5}{1.107} \approx 6.78.
\]
Step 3: Calculate the downstream depth (\( y_2 \)).
Using the equation for \( y_2 \):
\[
y_2 = \frac{0.5}{2} \left( \sqrt{1 + 8 \cdot (6.78)^2} - 1 \right).
\]
Simplify:
\[
y_2 = 0.25 \left( \sqrt{1 + 8 \cdot 45.97} - 1 \right),
\]
\[
y_2 = 0.25 \left( \sqrt{1 + 367.76} - 1 \right),
\]
\[
y_2 = 0.25 \left( \sqrt{368.76} - 1 \right),
\]
\[
y_2 = 0.25 \left( 19.21 - 1 \right),
\]
\[
y_2 = 0.25 \cdot 18.21 \approx 4.55 \, \text{m}.
\]
Conclusion: The tailwater depth required to form a hydraulic jump is approximately \( y_2 = 4.55 \, \text{m} \).