A spherical soap bubble of radius 3 cm is formed inside another spherical soap bubble of radius 6 cm. If the internal pressure of the smaller bubble of radius 3 cm in the above system is equal to the internal pressure of the another single soap bubble of radius r cm. The value of r is ___
The correct answer is 2
\(\frac{4T}{R_1}+\frac{4T}{R_2} = \frac{4T}{r}\)
\(⇒ \frac{1}{r} = \frac{1}{3}+\frac{1}{6}\)
\(⇒ r = 2\ cm\)
Therefore , the value of r is 2cm
Consider a water tank shown in the figure. It has one wall at \(x = L\) and can be taken to be very wide in the z direction. When filled with a liquid of surface tension \(S\) and density \( \rho \), the liquid surface makes angle \( \theta_0 \) (\( \theta_0 < < 1 \)) with the x-axis at \(x = L\). If \(y(x)\) is the height of the surface then the equation for \(y(x)\) is: (take \(g\) as the acceleration due to gravity)
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is:
The amount of energy required to increase the liquid's surface area by one unit area is known as surface tension. In other words, it is a property of the liquid surface to resist force.
Surface tension is defined as,
The ratio of the surface force F to the length L along which the force acts.
Mathematically, the surface tension formula can be expressed as follows:
T=F/L
Where,
Read More: Detergents and Surface Tension
The SI unit of Surface Tension is Newton per Meter or N/m.