For the neck (cylinder): radius $r_1=1$ cm, height $h=8$ cm; $\ V_1=\pi r_1^{2}h=\pi\cdot1^{2}\cdot8=8\pi\ \text{cm}^{3}$.
For the bulb (sphere): radius $R=\dfrac{8.5}{2}=4.25$ cm; $\ V_2=\dfrac{4}{3}\pi R^{3}
=\dfrac{4}{3}\pi(4.25)^{3}=\dfrac{4913}{48}\pi\ \text{cm}^{3}$.
Total volume to fill:
\[
V=V_1+V_2=\left(8+\frac{4913}{48}\right)\pi=\frac{5297}{48}\pi\ \text{cm}^{3}.
\]
Taking $\pi=\dfrac{22}{7}$,
\[
V=\frac{5297}{48}\cdot\frac{22}{7}=\frac{116534}{336}\approx 346.82\ \text{cm}^{3}.
\]
\[
\boxed{\text{Volume}\approx 346.8\ \text{cm}^{3}}
\]