Let
\[
\int x^3 \sin x \, dx = g(x) + C, \quad \text{where \( C \) is the constant of integration.}
\]
If
\[
g\left( \frac{\pi}{2} \right) + g\left( \frac{\pi}{2} \right) = \alpha \pi^3 + \beta \pi^2 + \gamma, \quad \alpha, \beta, \gamma \in {Z},
\]
then
\[
\alpha + \beta - \gamma \text{ equals:}
\]