Step 1: {Use energy conservation}
\[ m g h_{{initial}} = \frac{1}{2} m v^2 + mg h_{{final}} \] Cancel \( m \): \[ g h_{{initial}} = \frac{1}{2} v^2 + g h_{{final}} \] \[ (10 \times 100) = \frac{1}{2} v^2 + (10 \times 20) \] \[ 1000 = \frac{1}{2} v^2 + 200 \] \[ \frac{1}{2} v^2 = 800 \] \[ v = \sqrt{1600} = 40 { m/s} \] Thus, the correct answer is 40 m/s.
List-I | List-II | ||
P | If \(n = 2\) and \(\alpha = 180°\), then all the possible values of \(\theta_0\) will be | I | \(30\degree\) or \(0\degree\) |
Q | If \(n = √3\) and \(\alpha= 180°\), then all the possible values of \(\theta_0\) will be | II | \(60\degree\) or \(0\degree\) |
R | If \(n = √3\) and \(\alpha= 180°\), then all the possible values of \(\phi_0\) will be | III | \(45\degree\) or \( 0\degree\) |
S | If \(n = \sqrt2\) and \(\theta_0 = 45°\), then all the possible values of \(\alpha\) will be | IV | \(150\degree\) |
\[0\degree\] |
Evaluate the following limit: $ \lim_{n \to \infty} \prod_{r=3}^n \frac{r^3 - 8}{r^3 + 8} $.
In the given cycle ABCDA, the heat required for an ideal monoatomic gas will be:
A particle is moving in a straight line. The variation of position $ x $ as a function of time $ t $ is given as:
$ x = t^3 - 6t^2 + 20t + 15 $.
The velocity of the body when its acceleration becomes zero is: