Step 1: {Use energy conservation}
\[ m g h_{{initial}} = \frac{1}{2} m v^2 + mg h_{{final}} \] Cancel \( m \): \[ g h_{{initial}} = \frac{1}{2} v^2 + g h_{{final}} \] \[ (10 \times 100) = \frac{1}{2} v^2 + (10 \times 20) \] \[ 1000 = \frac{1}{2} v^2 + 200 \] \[ \frac{1}{2} v^2 = 800 \] \[ v = \sqrt{1600} = 40 { m/s} \] Thus, the correct answer is 40 m/s.
| List-I | List-II | ||
| P | If \(n = 2\) and \(\alpha = 180°\), then all the possible values of \(\theta_0\) will be | I | \(30\degree\) or \(0\degree\) |
| Q | If \(n = √3\) and \(\alpha= 180°\), then all the possible values of \(\theta_0\) will be | II | \(60\degree\) or \(0\degree\) |
| R | If \(n = √3\) and \(\alpha= 180°\), then all the possible values of \(\phi_0\) will be | III | \(45\degree\) or \( 0\degree\) |
| S | If \(n = \sqrt2\) and \(\theta_0 = 45°\), then all the possible values of \(\alpha\) will be | IV | \(150\degree\) |
| \[0\degree\] | |||