For a spherical lens, the focal length \( f \) is given by the lens formula:
\[
\frac{1}{f} = (\mu - 1) \left( \frac{1}{R_1} - \frac{1}{R_2} \right)
\]
For the air lens:
\[
\frac{1}{f_1} = (\mu_{\text{glass}} - 1) \left( \frac{1}{R_1} - \frac{1}{R_2} \right) = (1.5 - 1) \left( \frac{1}{10} - \frac{1}{10} \right)
\]
\[
\frac{1}{f_1} = 0.5 \times \left( \frac{2}{10} \right) = \frac{0.1}{10} \quad \Rightarrow \quad f_1 = 15 \, \text{cm}
\]
When a liquid with refractive index \( \mu_2 \) is filled, the effective refractive index becomes:
\[
\frac{1}{f_2} = (\mu_2 - 1) \left( \frac{1}{R_1} - \frac{1}{R_2} \right)
\]
For \( \mu_2 = 1.5 \), the focal length is:
\[
\frac{1}{f_2} = (1.5 - 1) \left( \frac{2}{10} \right) = \frac{1}{5} \quad \Rightarrow \quad f_2 = 30 \, \text{cm}
\]