To solve this problem, we need to find a solution to the differential equation:
\(2x^2\dfrac{d^2y}{dx^2} + 3x\dfrac{dy}{dx} - y = 0, \, x > 0\)
Given that it passes through the point (1, 1), we need to test the appropriate solution among the given options.
Let's substitute each of the given options into the differential equation to check which satisfies it:
\(2x^2\left(\dfrac{2}{x^3}\right) + 3x\left(-\dfrac{1}{x^2}\right) - \dfrac{1}{x} = 0\)
Simplifying: \(=\dfrac{4}{x} - \dfrac{3}{x} - \dfrac{1}{x} = 0\)
\(2x^2\left(\dfrac{6}{x^4}\right) + 3x\left(-\dfrac{2}{x^3}\right) - \dfrac{1}{x^2} \neq 0\)
\(2x^2\left(\dfrac{3}{4x^{5/2}}\right) + 3x\left(-\dfrac{1}{2x^{3/2}}\right) - \dfrac{1}{\sqrt{x}} \neq 0\)
\(2x^2\left(\dfrac{15}{4x^{7/2}}\right) + 3x\left(-\dfrac{3}{2x^{5/2}}\right) - \dfrac{1}{x^{3/2}} \neq 0\)
After testing all options, only \(y = \dfrac{1}{x}\) satisfies the differential equation, and it also passes through the point (1, 1). Thus, the correct answer is:
\(y = \dfrac{1}{x}\)
Let \( f : [1, \infty) \to [2, \infty) \) be a differentiable function. If
\( 10 \int_{1}^{x} f(t) \, dt = 5x f(x) - x^5 - 9 \) for all \( x \ge 1 \), then the value of \( f(3) \) is ______.