Question:

A solid sphere of mass \( m \) and radius \( r \) is allowed to roll without slipping from the highest point of an inclined plane of length \( L \) and makes an angle of \( 30^\circ \) with the horizontal. The speed of the particle at the bottom of the plane is \( v_1 \). If the angle of inclination is increased to \( 45^\circ \) while keeping \( L \) constant, the new speed of the sphere at the bottom of the plane is \( v_2 \). The ratio of \( v_1^2 : v_2^2 \) is:

Show Hint

The speed of a rolling sphere is determined by the angle of inclination. The energy involved in pure rolling is partitioned between translational and rotational motion. The key idea is the relationship between the speed and the sine of the angle of inclination.
Updated On: Apr 29, 2025
  • \( 1 : \sqrt{2} \)
  • \( 1 : 3 \)
  • \( 1 : 2 \)
  • \( 1 : \sqrt{3} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

To find the ratio of v12 : v22, we start by using the principles of energy conservation. When the sphere rolls down without slipping, both translational and rotational kinetic energies are involved.

Step 1: Calculate the speed when inclined at 30°.
The potential energy at the top is converted into translational and rotational kinetic energy at the bottom.
\( mgh = \frac{1}{2}mv^2 + \frac{1}{2}I\omega^2 \)
For a solid sphere, \( I = \frac{2}{5}mr^2 \) and \( \omega = \frac{v}{r} \).
Substitute these values:
\( mgh = \frac{1}{2}mv^2 + \frac{1}{2} \left( \frac{2}{5}mr^2 \right) \frac{v^2}{r^2} \)
\( mgh = \frac{1}{2}mv^2 + \frac{1}{5}mv^2 \)
\( mgh = \frac{7}{10}mv^2 \)
\( v^2 = \frac{10}{7}gh \)
For a plane inclined at 30°: \( h = L \sin(30^\circ) = \frac{L}{2} \)
\( v_1^2 = \frac{10}{7}g \cdot \frac{L}{2} = \frac{5}{7}gL \)

Step 2: Calculate the speed when inclined at 45°.
For an incline of 45°: \( h = L \sin(45^\circ) = \frac{\sqrt{2}}{2}L \)
\( v_2^2 = \frac{10}{7}g \cdot \frac{\sqrt{2}}{2}L = \frac{5\sqrt{2}}{7}gL \)

Step 3: Find the ratio of v12 : v22.
\( \frac{v_1^2}{v_2^2} = \frac{\frac{5}{7}gL}{\frac{5\sqrt{2}}{7}gL} = \frac{1}{\sqrt{2}} \)
Hence, the ratio is \( 1: \sqrt{2} \).

Was this answer helpful?
1
0