To find the ratio of v12 : v22, we start by using the principles of energy conservation. When the sphere rolls down without slipping, both translational and rotational kinetic energies are involved.
Step 1: Calculate the speed when inclined at 30°.
The potential energy at the top is converted into translational and rotational kinetic energy at the bottom.
\( mgh = \frac{1}{2}mv^2 + \frac{1}{2}I\omega^2 \)
For a solid sphere, \( I = \frac{2}{5}mr^2 \) and \( \omega = \frac{v}{r} \).
Substitute these values:
\( mgh = \frac{1}{2}mv^2 + \frac{1}{2} \left( \frac{2}{5}mr^2 \right) \frac{v^2}{r^2} \)
\( mgh = \frac{1}{2}mv^2 + \frac{1}{5}mv^2 \)
\( mgh = \frac{7}{10}mv^2 \)
\( v^2 = \frac{10}{7}gh \)
For a plane inclined at 30°: \( h = L \sin(30^\circ) = \frac{L}{2} \)
\( v_1^2 = \frac{10}{7}g \cdot \frac{L}{2} = \frac{5}{7}gL \)
Step 2: Calculate the speed when inclined at 45°.
For an incline of 45°: \( h = L \sin(45^\circ) = \frac{\sqrt{2}}{2}L \)
\( v_2^2 = \frac{10}{7}g \cdot \frac{\sqrt{2}}{2}L = \frac{5\sqrt{2}}{7}gL \)
Step 3: Find the ratio of v12 : v22.
\( \frac{v_1^2}{v_2^2} = \frac{\frac{5}{7}gL}{\frac{5\sqrt{2}}{7}gL} = \frac{1}{\sqrt{2}} \)
Hence, the ratio is \( 1: \sqrt{2} \).