Given, mass of solid sphere \( = 80 \) kg
Radius of solid sphere, \( R_s = 15 \) m
Radius of circular disc, \( R_c = 20 \) m
Time \( = 1 \) hour \( = 60 \) minutes \( = 60 \times 60 \) sec
Step 1: Moment of Inertia of Solid Sphere
\[
I_s = \frac{2}{5} M R^2
\]
\[
I_s = \frac{2}{5} \times 80 \times (15)^2
\]
\[
I_s = 7200 { kg} \cdot {m}^2
\]
Step 2: Moment of Inertia of Circular Disc
\[
I_c = \frac{1}{2} M R_c^2
\]
\[
I_c = \frac{1}{2} \times 80 \times (20)^2
\]
\[
I_c = 16000 { kg} \cdot {m}^2
\]
Step 3: Rate of Change of Moment of Inertia
\[
\frac{dI}{dt} = \frac{I_c - I_s}{t}
\]
\[
\frac{dI}{dt} = \frac{16000 - 7200}{60 \times 60}
\]
\[
\frac{dI}{dt} = \frac{22}{9} { kg} \cdot {m}^2 {s}^{-1}
\]