Let the radius of the new solid sphere be \( R \). The volume of a sphere is given by the formula:
\[
V = \frac{4}{3} \pi r^3.
\]
Step 1:
The volumes of the three metallic spheres are:
- For the sphere with diameter 12 cm, the radius is \( r_1 = 6 \, \text{cm} \), so the volume is:
\[
V_1 = \frac{4}{3} \pi (6)^3 = \frac{4}{3} \pi \times 216 = 288 \pi \, \text{cm}^3.
\]
- For the sphere with diameter 16 cm, the radius is \( r_2 = 8 \, \text{cm} \), so the volume is:
\[
V_2 = \frac{4}{3} \pi (8)^3 = \frac{4}{3} \pi \times 512 = \frac{2048}{3} \pi \, \text{cm}^3.
\]
- For the sphere with diameter 20 cm, the radius is \( r_3 = 10 \, \text{cm} \), so the volume is:
\[
V_3 = \frac{4}{3} \pi (10)^3 = \frac{4}{3} \pi \times 1000 = \frac{4000}{3} \pi \, \text{cm}^3.
\]
Step 2:
The total volume of the three spheres is:
\[
V_{\text{total}} = V_1 + V_2 + V_3 = 288 \pi + \frac{2048}{3} \pi + \frac{4000}{3} \pi.
\]
Simplify the total volume:
\[
V_{\text{total}} = 288 \pi + \frac{2048 + 4000}{3} \pi = 288 \pi + \frac{6048}{3} \pi = 288 \pi + 2016 \pi = 2304 \pi \, \text{cm}^3.
\]
Step 3:
The volume of the new sphere is:
\[
V_{\text{new}} = \frac{4}{3} \pi R^3.
\]
Equating the total volume of the spheres and the volume of the new sphere:
\[
2304 \pi = \frac{4}{3} \pi R^3.
\]
Cancel \( \pi \) from both sides:
\[
2304 = \frac{4}{3} R^3.
\]
Multiply both sides by 3:
\[
6912 = 4 R^3.
\]
Now divide both sides by 4:
\[
R^3 = 1728 \quad \Rightarrow \quad R = \sqrt[3]{1728} = 12 \, \text{cm}.
\]
Step 4:
The diameter of the new solid sphere is \( 2R = 2 \times 12 = 24 \, \text{cm}. \)
Conclusion:
The diameter of the new solid sphere is \( 24 \, \text{cm} \).