Using the equation for rolling motion, the time taken for the solid sphere to reach the bottom will be less than the time taken by the hollow sphere, as the solid sphere has a greater rotational inertia compared to the hollow one.
Final Answer: \( t_1 < t_2 \).
Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason (R).
Assertion (A): The density of the copper ($^{64}Cu$) nucleus is greater than that of the carbon ($^{12}C$) nucleus.
Reason (R): The nucleus of mass number A has a radius proportional to $A^{1/3}$.
In the light of the above statements, choose the most appropriate answer from the options given below:
Given below are two statements:
Statement I: In the oxalic acid vs KMnO$_4$ (in the presence of dil H$_2$SO$_4$) titration the solution needs to be heated initially to 60°C, but no heating is required in Ferrous ammonium sulphate (FAS) vs KMnO$_4$ titration (in the presence of dil H$_2$SO$_4$).
Statement II: In oxalic acid vs KMnO$_4$ titration, the initial formation of MnSO$_4$ takes place at high temperature, which then acts as catalyst for further reaction. In the case of FAS vs KMnO$_4$, heating oxidizes Fe$^{2+}$ into Fe$^{3+}$ by oxygen of air and error may be introduced in the experiment.
In the light of the above statements, choose the correct answer from the options given below:
Two blocks of masses \( m \) and \( M \), \( (M > m) \), are placed on a frictionless table as shown in figure. A massless spring with spring constant \( k \) is attached with the lower block. If the system is slightly displaced and released then \( \mu = \) coefficient of friction between the two blocks.
(A) The time period of small oscillation of the two blocks is \( T = 2\pi \sqrt{\dfrac{(m + M)}{k}} \)
(B) The acceleration of the blocks is \( a = \dfrac{kx}{M + m} \)
(\( x = \) displacement of the blocks from the mean position)
(C) The magnitude of the frictional force on the upper block is \( \dfrac{m\mu |x|}{M + m} \)
(D) The maximum amplitude of the upper block, if it does not slip, is \( \dfrac{\mu (M + m) g}{k} \)
(E) Maximum frictional force can be \( \mu (M + m) g \)
Choose the correct answer from the options given below: