The increase in volume is given by:
\[
\Delta V = V_0 \gamma \Delta T,
\]
where:
\( V_0 = a^3 \) (initial volume of the cube),
\( \gamma = 3\alpha \) (coefficient of volumetric expansion),
\( \Delta T = 10^\circ \, \text{C} \) (temperature change).
The surface area of a cube is:
\[
\text{Total Surface Area} = 6a^2.
\]
Given \( 6a^2 = 24 \, \text{m}^2 \), solve for \( a \):
\[
a^2 = \frac{24}{6} = 4 \, \text{m}^2 \quad \implies \quad a = 2 \, \text{m}.
\]
The initial volume is:
\[
V_0 = a^3 = 2^3 = 8 \, \text{m}^3 = 8 \times 10^6 \, \text{cm}^3.
\]
Substitute into the formula for \( \Delta V \):
\[
\Delta V = 8 \times 10^6 \cdot (3 \cdot 5 \times 10^{-4}) \cdot 10.
\]
Simplify:
\[
\Delta V = 8 \times 10^6 \cdot 15 \times 10^{-3} = 1.2 \times 10^5 \, \text{cm}^3.
\]