A solid is a cone standing on a hemisphere with both radii $2$ cm and the slant height of the cone $=2\sqrt{2}$ cm. Find the volume of the solid. (Use $\pi=3.14$)
Step 1: Find the cone's height.
Given $r=2$ cm and $l=2\sqrt{2}$ cm, so
\[
h=\sqrt{l^2-r^2}=\sqrt{(2\sqrt{2})^2-2^2}=\sqrt{8-4}=2\text{ cm}.
\]
Step 2: Volumes.
Cone: $V_{\text{cone}}=\dfrac{1}{3}\pi r^2 h=\dfrac{1}{3}\pi\cdot 4\cdot 2=\dfrac{8}{3}\pi$.
Hemisphere: $V_{\text{hem}}=\dfrac{2}{3}\pi r^3=\dfrac{2}{3}\pi\cdot 8=\dfrac{16}{3}\pi$.
Total:
\[
V=V_{\text{cone}}+V_{\text{hem}}=\frac{8}{3}\pi+\frac{16}{3}\pi=\frac{24}{3}\pi=8\pi.
\]
With $\pi=3.14$,
\[
\boxed{V=8\pi=25.12\ \text{cm}^3}.
\]
Find the unknown frequency if 24 is the median of the following frequency distribution:
\[\begin{array}{|c|c|c|c|c|c|} \hline \text{Class-interval} & 0-10 & 10-20 & 20-30 & 30-40 & 40-50 \\ \hline \text{Frequency} & 5 & 25 & 25 & \text{$p$} & 7 \\ \hline \end{array}\]
Two concentric circles are of radii $8\ \text{cm}$ and $5\ \text{cm}$. Find the length of the chord of the larger circle which touches (is tangent to) the smaller circle.