For a solid cylinder rolling without slipping, total mechanical energy is conserved.
Potential energy at height \( h \):
\[
PE = mgh
\]
At the bottom, total energy is translational + rotational:
\[
KE = \frac{1}{2}mv^2 + \frac{1}{2}I\omega^2
\]
For a solid cylinder, \( I = \frac{1}{2}mR^2 \) and \( \omega = \frac{v}{R} \), so:
\[
\frac{1}{2}mv^2 + \frac{1}{2} \cdot \frac{1}{2}mR^2 \cdot \frac{v^2}{R^2} = \frac{1}{2}mv^2 + \frac{1}{4}mv^2 = \frac{3}{4}mv^2
\]
Equating energies:
\[
mgh = \frac{3}{4}mv^2 \Rightarrow v^2 = \frac{4gh}{3} \Rightarrow v = \sqrt{\dfrac{4gh}{3}}
\]