Given,
edge of solid copper cube, $l=7 \,cm$
hydraulic pressure, $p=8000 \,kPa =8000 \times 10^{3}\, Pa$
and Bulk modulus of copper, $\beta=140\, GPa$
$=140 \times 10^{9} \,Pa$
As we know that,
Bulk modulus, $\beta=\frac{p}{\left(\frac{\Delta V}{V}\right)}$
or $\beta=\frac{p V}{\Delta V}$
$\therefore \Delta V=\frac{p V}{\beta} =\frac{8000 \times 10^{3} \times(l)^{3}}{140 \times 10^{9}} $
$=\frac{8000 \times 10^{3} \times(7)^{3}}{140 \times 10^{9}}$
$=19.6 \times 10^{-3} \,cm ^{3} $