The magnetic field inside a solenoid is given by:
\[ B = \mu_0 n i, \]
where:
- \( B = 6.28 \times 10^{-3} \, \text{T} \) is the magnetic field,
- \( \mu_0 = 4\pi \times 10^{-7} \, \text{T m/A} \) is the permeability of free space,
- \( n = \frac{m}{\ell} \) is the number of turns per unit length,
- \( i = 5 \, \text{A} \) is the current,
- \( \ell = 0.5 \, \text{m} \) is the length of the solenoid.
Step 1: Rearranging the Formula
Substituting the given values:
\[ \mu_0 \left( \frac{m}{\ell} \right) i = B. \]
Rearranging to find \( m \):
\[ m = \frac{B \ell}{\mu_0 i}. \]
Step 2: Substituting the Values
Substituting the given values:
\[ m = \frac{6.28 \times 10^{-3} \times 0.5}{4\pi \times 10^{-7} \times 5}. \]
Simplifying:
\[ m = \frac{6.28 \times 10^{-3} \times 0.5}{12.56 \times 10^{-7}}. \]
Further simplification:
\[ m = \frac{3.14 \times 10^{-3}}{12.56 \times 10^{-7}}. \]
Calculating:
\[ m = 500. \]
Therefore, the value of \( m \) is 500.
The magnitude of heat exchanged by a system for the given cyclic process ABC (as shown in the figure) is (in SI units):

Given below are two statements. One is labelled as Assertion (A) and the other is labelled as Reason (R):
Assertion (A): An electron in a certain region of uniform magnetic field is moving with constant velocity in a straight line path.
Reason (R): The magnetic field in that region is along the direction of velocity of the electron.
In the light of the above statements, choose the correct answer from the options given below: